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Abstract 
 
Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for 
lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct 
daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can 
take hours or even days using a personal computer. This paper describes how to accelerate the matrix 
multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on 
heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was 
implemented in parallel using OpenCL. The speed of new approach was evaluated using various daylighting 
simulation cases on a multicore central processing unit and a graphics processing unit. Based on the 
measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be 
achieved by using fast I/O devices and storing the data in a binary format.  
 
Keywords: parallel computing, OpenCL, daylighting simulation, multicore central processing unit, graphics 
processing unit  
 
 
1. Introduction 
 
Building fenestration systems impact building energy usage through daylighting, solar heating and shading, and 
natural ventilation. Designing low energy buildings requires a strategic optimization of fenestration systems to 
balance these impacts. This can only be done by conducting integrated simulation of fenestration systems with 
whole building energy simulation.  Unfortunately, current building energy simulation tools are not able to 
simulate complex fenestration systems (CFS) that are often used by low energy buildings, such as sculptural 
shading layers and sunlight redirecting systems. To study the energy impact of innovative fenestration systems 
for a whole building, it is necessary to use a sophisticated daylight simulation tool capable of simulating CFS, 
such as Radiance (Larson, 1998), in conjunction with the building energy simulation tool.  
 
Recent enhancements to Radiance enable the simulation of CFS using a three-phase method (McNeil, 2012, 
Ward, 2011). This method pre-calculates coefficients that relate the luminance of discrete sky regions to 
resulting illuminance at work plane sensors. Once these coefficients are computed, the work plane illuminance 
can be calculated for any time, sky condition or fenestration system with relatively fast matrix multiplication. 
Using the three-phase method, Radiance can pre-calculate the annual daylight illuminance profile for a room 
which can then be input into building energy simulation tools. The matrix multiplication of the three-phase 
method takes about a few minutes for a single annual daylighting simulation for a small building on a personal 
computer. The annual daylighting simulation may take hours if it is applied to a large commercial building. 
Furthermore, the simulation time can become days or weeks when we optimize the design of CFS by performing 
parametric studies for different fenestration systems, weather conditions, window sizes and orientations, and 
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building shapes.  Considering the limited time available for the CFS design in industrial practice, it is important 
to further reduce the simulation time of Radiance daylighting simulations.  
 
A common approach to accelerate the simulation is parallel computing. Parallel computing with multi-CPUs on 
supercomputers is the most commonly used parallel technology in building simulation. The examples are 
computational fluid dynamics for indoor environment (Mazumdar, 2008, Hasama, 2008), uncertainty and 
sensitivity decomposition of building energy models (Eisenhower, 2011), and massive building energy 
simulations (Hopkins, 2011). However, purchasing and maintaining the supercomputers is usually too expensive 
for small businesses that make up the majority of the building industry. Even with the newest cloud computing, 
companies still have to pay a fair amount of fee for the computing service. Considering modern personal 
computers are equipped with parallel computing hardware, such as the multi-core CPU and GPU, it is an 
economic approach to conduct building simulation in parallel using them. For example, researchers have 
conducted parallel computing for indoor airflow simulation (Zuo, 2010, Wang, 2011) and solar radiation (Jones, 
2012) using the GPU. 
 
Parallel programming languages may work only for specific hardware. For instance, the CUDA language used in 
the study of Zuo and Chen (2010) was only for the NVIDIA GPU. Since Radiance is publicly released, it is 
important that it is parallelized using a language supported by various hardware. Thus, this study selected 
OpenCL that is the first open standard for parallel programming on heterogeneous hardware, including CPUs, 
GPUs, embedded processors and other processors (http://www.khronos.org/opencl/).  
 
In the following parts of the paper, we will first introduce the three-phase method for daylighting calculation in 
Radiance and the basic concepts of OpenCL. Then we will show the optimization and implementation of the 
Radiance daylighting simulation algorithm using OpenCL for parallel computing. Numerical experiments will be 
presented to evaluate acceleration of simulation on heterogeneous hardware. Detailed analysis on the 
performance barriers will also be given through the cases studies. At the end, methods to further accelerate the 
simulation will be discussed. 
 
 
2. Daylighting calculation in Radiance  
 
The three-phase method enables users to perform annual daylight simulations for complex and/or dynamic 
fenestration systems (McNeil, 2012, Ward, 2011). It is based on a daylight coefficient method (Tregenza, 1983) 
that calculates contribution coefficients for discretized sky patches to sensor scenes.  The three-phase method 
splits the daylight simulation into three phases: sky contribution to the exterior of the fenestration, transmission 
through the fenestration, and window contribution to the sensor scene. A Radiance ray tracing simulation 
generates luminous energy transfer coefficients relating the directional output of the sky to the directional input 
of the window and the directional output of the window to the illuminance contributions at the sensors.  These 
coefficients are stored in three independent matrices, one for each phase of the simulation, termed daylight 
matrix MD for exterior transfer from the sky to the window, transmission matrix MT for window transmission, 
and view matrix MV for interior transfer from the window to the sensor.   
 
To generate work plane illuminance, users first create a sky vector VS(t) from diffuse horizontal and direct 
normal irradiance data using Radiance’s genskyvec program.  As shown in  Figure 1, the sky vector has either 
146 elements using Tregenza sky discretization (Tregenza, 1987) or 2306 elements using Reinhart sky 
discretization (Reinhart, 2001, Reinhart, 2011),  representing the average luminance of the corresponding regions 
for a given time, location, sky type and color of light. The simulation using the Reinhart vector can provide more 
accurate results, but is more time consuming during matrix multiplication stage than that using the Tregenza 
vector. Then, the sky vector is multiplied by matrices MD, MT and MV to generate an illuminance vector VI(t) for 
all of the sensor points as follows: 

 VR(t) = MDVS(t), (1) 

 VC(t) = MTVR(t),       (2) 

 VI(t) = MVVC(t), (3) 

where VR(t) and VC(t) are temporary vectors.  
 

http://en.wikipedia.org/wiki/Heterogeneous_computing�
http://www.khronos.org/opencl/�
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(a) Tregenza Discretization 

 
(b) Reinhart Discretization 

Figure 1. Sky discretization methods 
 
The matrix multiplications in equations (1) to (3) are performed by a program called dctimestep in Radiance 
(Version 4R0). The algorithm was designed to calculate the daylighting effects for only one time step. To 
conduct a daylighting simulation for a period of time, we will need another program to invoke dctimestep at each 
time step (Figure 2). Similarly, parametric studies with various daylighting configurations can be performed by 
invoking the daylighting simulation with different combinations of coefficient matrices and sky vectors.  
 

 
 

Figure 2. Workflow of the current Radiance daylighting simulation program 
 
 

3. OpenCL 
 
This study parallelized the daylighting simulation using OpenCL. OpenCL adopts a host-device plat model 
(Figure 3). The host is a commander that connects to one or more devices. The device contains one or more 
compute units. The compute unit can be further divided into one or more processing elements. The processing 
element is the basic unit for computing on the device.  
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In the execution mode of an OpenCL program, a host program runs on the host and one or more kernels runs on 
the devices. The host program initializes OpenCL supported hardware, creates OpenCL environment, and 
launches kernels. The parallel computing is conducted through kernels on devices. For more details of OpenCL, 
see the OpenCL specification (Munshi, 2010).    
 

 
 

Figure 3. Platform model in OpenCL 
 

 
4. Implementation 
 
Our original plan was to parallelize the matrix multiplication in equations (1) to (3) without changing the 
algorithm. However, the numerical experiments showed that this approach slowed down the simulation instead 
of speeding up it. The reason was that the current algorithm was designed for sequential computing, not parallel 
computing. As a result, we conducted a rigorous analysis on the current algorithm and proposed a new algorithm 
that is more efficient and more suitable for parallel computing. The details of analysis and optimization are given 
in the Appendix.  
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Figure 4. Flow diagram of parallelized Radiance daylighting simulation using OpenCL. 
 
To validate the new algorithm, we first implemented it into a sequential code named dctime. After that, we 
implemented the new algorithm in parallel into a program named dctime_ocl using OpenCL 1.1 (Munshi, 2010). 
Figure 4 shows the flow diagram of dctime_ocl. The host program is a C code modified from the dctime. 
Compared to dctime, the host program of dctime_ocl has additional routines to initialize the OpenCL device, to 
create an OpenCL environment, to allocate device memory and transfer the data between the host memory and 
the device memory, and to define input parameters needed by the kernel functions. The matrix multiplication 
part is implemented in the kernel program. For simplification, current implementation assigns one thread to 
compute only one element of the matrix. There are approaches to achieve higher performance for matrix 
calculations on GPUs or multi-core CPUs (Kirk, 2010). But the current approach is the simplest and the results 
also show that it is sufficient for this application. 
 
 
5. Case Studies 
 
5.1. Experimental Settings  
 
To evaluate the perforamnce of the new approach proposed in section 4, we measured the performance of three 
programs, including dctimestep of the current Radiance release (Version 4R0), dctime and dctime_ocl that are 
the sequential and parallel versions of the new algorihtm, respectively. Both the Tregenza and Reinhart vectors 
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were used for the same sky condition. The computer used in this study has two hardware supporting OpenCL, an 
Intel Xeon CPU and a NVIDIA GeForce GTX 460 GPU. The CPU has 4 processors and 6 cores on each 
processor, which corresponds to 4 OpenCL compute units and 24 processing elements in total. The GPU has 42 
streaming multiprocessors and 8 streaming processors on each streaming multiprocessor, which corresponds to 
42 compute units and 336 processing elements in total. The clock frequency is 2.67GHz for the CPU and 
1350MHz for the GPU. This CPU is used as the host and the device is either the CPU or the GPU.  
 
We denote by “simulation time” the real elapsed time between program invocation and termination. It is the real 
time measured by time command in Linux and includes the time for system overhead, data I/O, and computing. 
As we will see in the results, the simulation time in this study is significantly different than the “computing time” 
that is the real elapsed time used for floating point operations. 

 
5.2. Simulation of one building for different periods 
 
A common use of daylighting simulation is to simulate daylight for many points in time to understand the 
aggregate daylighting effect over a period of time. Figure 5 compares the simulation time of the current and new 
approaches for different simulation time periods. The time step size is one hour and n is the number of time 
steps. There are preprocesses for all the simulations that exclude the time steps without daylighting (see 
Appendix A for details). Optimizing the algorithm speeds up the simulation so dctime is always faster than 
dctimestep. Parallel computing doesn’t always further speed up the simulation and the performance also highly 
depends on the parallel computing hardware. When the device is CPU, dctime_ocl is faster than dctime for n > 
2500 using the Tregenza vector (Figure 5a) and for n > 500 using the Reinhart vector (Figure 5b). When the 
device is GPU, dctime_ocl is slower than dctime for all the n using the Tregenza vector (Figure 5a) and faster 
than dctime for n > 2000 using the Reinhart vector (Figure 5b).  
 
To understand why parallel computing did not always speed up the simulation, we measured the detailed time 
usages of dctime_ocl on both the CPU and GPU. The simulation time tsim is then separated into five parts: 

 tsim = tos + tsky + tcl  + tcom + tres, (4) 

where the variable tos is the time for Linux system to invoke and terminate dctime_ocl.  The variable tsky is the 
time to read the sky matrix MVS from hard disk drive to CPU memory. The variable tcl is the time to create an 
OpenCL context for the device by running an OpenCL function clcreateContext( ). Creating the OpenCL context 
is part of the initialization process for computing on the device. The OpenCL runtime uses the context for 
managing objects such as command-queues, memory, program and kernel objects and for executing kernels on 
devices specified in the context. The computing time tcom is the time to conduct floating-point operations for 
matrix multiplications on the device. The variable tres is the time used by the rest parts of the simulation, 
including reading and writing other matrices, filtering the zero vectors, transferring data between the host and the 
device, initializing the OpenCL device and the OpenCL programming environment except creating OpenCL 
context.  

 
(a) Tregenza Vector 

 
(b) Reinhart Vector 

Figure 5. Comparison of the simulation time used by three programs. 
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As shown in Figure 6(a), the time tos for the operating system to invoke and terminate the OpenCL program 
varies from about 0.01s for the CPU to about 1s for the GPU.  Figure 6(b) compares the time tcl for executing the 
function clcreateContext( ) to create the OpenCL context on the device. It took about 0.001s on the CPU and 
about 1.5s on the GPU.  The tos and tcl can be considered time for overheads. When using the GPU as device with 
small n, the time for the overhead can be the dominating part of the simulation time. For instance, they 
accounted for 90% of the simulation time when n = 24 using the Tregenza vector. It is worth to mention that the 
values of tos and tcl were independent of matrix sizes and random for different program runs. Thus, the time 
reported in this paper was an averaged value of multiple program runs.  
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(a) tos 

 
(b) tcl 

 
(c) tsky 

  
(d) tcom 

 
(e) tres 

Figure 6. Detailed time usages by dctime_ocl on the CPU and GPU.  
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The time tsky for loading the sky matrix MVS depends on the sky discretization methods and the number of time 
steps (Figure 6c). With finer discretization, the data set of the Reinhart vector is larger than that of the Tregenza 
vector. Thus, tsky of simulations using the Reinhart vector is larger than that of using the Tregenza vector. The 
value of tsky increases with n since the dimension of MVS is N3 × n. As a result, tsky is significant when n is large. 
For instance, using the Reinhart vector for n = 8760, tsky was 10.85s and accounted for about 70% of the 
simulation time. 
 
Compared to tsky, the computing time tcom is less significant (Figure 6d) in this case. For n = 8760 with the 
Reinhart vector, tcom was 0.45s using the GPU and 4.33s using the CPU compared to tsky = 10.85s. The tcom 
increases with n since the number of floating-point operations increases with n. Sudden increases of tcom for GPU 
and decreases of tcom for CPU can be observed in Figure 6d. The changes of tcom are repeatable and related to n. 
They may be caused by the mapping between the data structures and processing elements on the device. Similar 
phenomenon was also observed in other work (Zuo, 2010). 
 
Figure 6(e) compares the time tres used by other features. It also increases with n because larger n means larger 
data set to pre-process, transfer and post-process. Compared to other parts of the simulation time, tres is not 
significant for a single annual simulation since it is less than 1s. 
 
To identify the speedup due to parallel computing alone, Table 1 compares the computing time tcom of sequential 
and parallel program with n = 8760 and the speedups due to parallel computing. Parallel computing on the 
multicore CPU could reduce tcom by about 13 times using the Tregenza vector and 5 times using the Reinhart 
vector. The GPU can provide further speedup of about 24 times using the Tregenza vector and 52 times using the 
Reinhart vector. However, using GPU as device needs significant time for overheads that is significantly more 
than the computing time. Thus, the simulation time of parallel program on GPU is longer than that on the CPU in 
this case. 
  
Table 1. Performance enhancement on matrices multiplication due to parallel computing. 
 

Sky Vector dctime dctime_ocl on CPU dctime_ocl on GPU 
 Computing time (tcom) in seconds 

Tregenza 1.985 0.149 0.082 
Reinhart 23.153 4.326 0.447 

 Speedup compared to dctime 
Tregenza 1 13 24 
Reinhart 1 5 52 

 
 
 

5.3.  Annual simulations for different buildings 
 
The previous case used different simulation periods for the same building. This case is to evaluate the optimized 
algorithm and parallel computing on different hardware using 7 different commercial buildings for an hourly 
simulation of a year. The areas of the buildings were estimated based on the commercial reference buildings 
developed by the U.S. Department of Energy (Deru, 2011) and the number of sensor points for interior 
illuminance computation were based on the area of the space (Table 2). The same Reinhart sky vector, daylight 
matrix and transmission matrix were used for all the cases. 
 

Table 2. Specifications of the view matrices for the 7 studied buildings 
 

Case  Number of sensor points for 
illuminance computation  

Description 

1 25 A 10 × 10 feet small office 
2 150 A 15 × 10 feet office  
3 500 A 25 × 20 feet office  
4 2,220 A 15 × 148 feet zone of a medium building 
5 7,200 One floor of a small office building 
6 17,000 One floor of a medium office building 
7 38,400 One floor of a large office building 
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Figure 7 shows the speedup of the proposed sequential and parallel programs compared to the current 
Radiance method. By optimizing the algorithm, the new sequential code (dctime) can speed up the 
simulation by 1.4 to 3 times. Parallel computing on the GPU (dctime_ocl GPU) had high performances 
(about 50 times speedup) with small numbers of interior illuminances and low performances (about 4 times 
speedup) with large numbers of interior illuminances. Due to the low overhead, parallel computing on the 
multicore CPU provided the best performance and the speedup was from 70 to 110 times.   
   

 
Figure 7. Simulation time of annual daylighting simulation for 7 buildings using different approaches. 

 
To show the impact of accelerating matrix multiplication on the overall annual daylighting simulation time, 
Table 3 and Table 4 show full simulation time for annual 3-phase simulations similar to what would be required 
by the IESNA spatial daylight autonomy calculation (Illuminating Engineering Society of North America, 2011).  
The simulations for case 2 (Table 3) assumed two shading states (deployed and retracted) and a single window 
orientation so that two annual matrix multiplications are required. The simulations for case 6 (Table 4) assumed 
four window orientations, two window shade groups per orientation, and two window shade conditions 
(deployed and retracted). This required 16 annual matrix multiplications. The results clearly show when the 
number of sensor points increases to encompass a full floor of a medium sized office building, the view matrix 
generation becomes more time consuming. View matrix generation is a parallel process, so acceleration over 
multi-core desktop machines is possible and currently implemented.   
 
Table 3. Full 3-phase simulation duration in seconds for case 2 (150 sensor points, 10×15 office) 
 
 Simulation Time [s] 
 dctimestep dctime dctime_ocl_cpu dctime_ocl_gpu 
View Matrix 75 
Transmission Matrix 
(2 shading states) 

120 (60×2) 

Daylight Matrix 45 
Matrix Multiplication (2 
runs) 

664 
(332×2) 

179 
(89.5×2) 

6.4 
(3.2×2) 

13.4 
(6.7×2) 

Total 904 419 246.4 253.4 
Speedup  2.2× 3.7× 3.6× 
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Table 4. Full 3-phase simulation duration in seconds for case 6 (17,000 sensor points, one floor of a medium 
building) 
 
 Simulation Time [s] 
 dctimestep dctime dctime_ocl_cpu dctime_ocl_gpu 
View Matrix 
(2 shade groups, computed 
in parallel) 

3230 

Transmission Matrix 
(2 shading states) 

120 (60×2) 

Daylight Matrix 
 (4 orientations) 

180 (45×4) 

Matrix Multiplication (16 
runs) 

11874 
(742.1×16) 

6752 
(422.0×16) 

166 
(10.4×16) 

2782 
(173.9×16) 

Total 15404 10282 3696 6312 
Speedup  1.5× 4.2× 2.4× 
 
 
5.4.   Parametric study for optimization of fenestration systems 
 
The previous two cases are annual simulations for a single condition (climate and fenestration system). This case 
is to evaluate the performance for multiple annual simulations using parametric studies for CFS design 
optimization. The design choices included 8 fenestration systems, 4 window sizes, 6 window orientations, and 
8 interior building shapes. This corresponded to 1536 simulations with a combination of 8 transmission matrices 
MT, 32 view matrices MV, and 6 daylight matrices MD. For this case (unlike the previous two cases) we measured 
performance of parallel program on the same CPU by using different numbers of CPU processors as devices. 
 
To conduct the same parametric study, the current Radiance code needed about 337,827s and 500,792s for the 
cases with Tregenza and Reinhart vectors, respectively. As shown in the Figure 8, the new approaches could 
significantly reduce the simulation time and the speedups were from 310 to 800 times for cases using Tregenza 
vector and from 410 to 720 for Reinhart vectors. The large contribution of the speedup was due to the redesign 
of the algorithm. Parallel computing can also further reduce the simulation time for this parametric study.  
 
Among the parallel computing approaches, using more processing elements did not necessarily reduce the 
simulation time (Figure 8) although it did reduce the computing time (Figure 9). The reason is that adding more 
processing elements will also increase the time for overhead. As a result, the simulation time, that includes both 
the time for computing and overhead, may increase as the number of processing elements increases. Thus, it is 
critical to find an optimal number of processing elements to balance the time of computing and overhead for the 
maximum performance. For this case, using 2 CPU cores required the least simulation time although its 
computing time was the longest. 

 
Figure 8. Simulation time of a parametric study using difference approaches. Bars: simulation time; lines: 

speedup compared to dctimestep 
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Figure 9. Computing time of a parametric study using difference approaches. Bars: simulation time; lines: 

speedup compared to dctime 
 
 
6. Discussion 
 
The fact that speedup comes from the optimization of numerical algorithm was unexpected. Originally, we 
planned to only parallelize the computational part without changing the algorithm. However, it turned out that 
our first parallelized code was much slower than the existing code. We then did research to understand why the 
code performed so badly and found that we had to optimize the algorithm first. The design of new algorithm was 
based a large amount numerical experiments and data analysis although it seems straight forward afterwards. For 
instance, the large overhead on the operating system and OpenCL program was also unexpected and only found 
after detailed measurement of time usage for each simulation step. Combining all those finding, we proposed the 
new algorithm. 
 
The same principle also applies for the further speed up of the simulation. According to the Amdahl’s law 
(Amdahl, 1967), the maximum speedup of a program by using parallel computing is decided by the ratio of 
sequential parts in the entire simulation. Originally, the data I/O time was not an issue since it was much shorter 
than the computing time. After we significantly reduced the computing time, the data I/O became a dominant 
barrier for further speedup. For instance, the parametric study wrote 1536 MVI matrices with about 37.3 GB data 
to the hard disk drive. Writing this amount of data accounted for about 95% of the simulation time of dctime_ocl 
on the GPU.  
To further speed it up, we used more efficient data I/O, such as storing the matrices in binary format instead of 
ASCII (American National Standards Institute, 1968) and storing them in fast storage devices. Our experiments 
showed that the simulation time of dctime_ocl on GPU for the above parametric study using Reinhart vector was 
further reduced to about 40s, which made the overall speedup about 12,000 times. However, users may not 
benefit from this approach if they need to post-process the data in ASCII format. In that case, the data has to be 
converted from binary to ASCII and the format conversion takes a similar amount of time as writing the data 
directly in ASCII format.   
 
It is worth to mention that the data I/O issue may also apply for many other building simulation tools, such as 
EnergyPlus that also stores data in ASCII format. Due to the same reason, storing data in binary format or using 
fast storage devices is urgently needed in the past. It is likely that the data I/O will become a challenge when a 
large number of building simulations are performed.   
 
As mentioned in Figure 6(d), there is sudden time increase or decrease in computing time for OpenCL devices. 
To avoid this, optimization of the data flow for a specific OpenCL device is needed. Furthermore, it is possible 
to achieve higher performance by optimizing the implementation of OpenCL code for specific hardware to 
utilize their full capacity (Volko, 2008). However, two issues should be considered. First, the performance 
enhancement due to optimization highly depends on the nature of the applications. For the parametric study of 
annual daylighting simulations discussed in this paper, the computing time only account for a small portion 
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(about 5%) of the simulation time for the dctime_ocl if the data is in ASCII format and stored in the hard disk 
drive. In that case, further optimization for parallel computing is not critical since it can only reduce a small 
amount of the simulation time. Second, Radiance is widely used software and may run on different hardware. 
The cost of optimizing the code for various hardware platforms can be too large compared to the benefits.  
 
 
7. Conclusion 
 
As a proof of concept study, this work is one of the first papers that implementing and evaluating the cross-
platform parallel computing technology on different hardware for building simulation. Using the matrix 
multiplication of Radiance daylighting simulation as an example, we have conducted detailed analysis on this 
new technology and identified the advantages and limitations. The program we developed was among the first 
building simulation programs that could run on both multi-core CPU and GPU. Parallel computing with OpenCL 
on multi-core CPU or GPU could speedup the daylighting simulations for large buildings and parametric studies 
although the largest speedup came from the algorithm optimization due to the inefficiency of current algorithm. 
For our application, there was a significant difference between the computing time and simulation time and using 
multi-core CPU could provide better performance than the GPU since the prior had significantly lower overhead 
than the latter.  
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Appendix 1: Analysis and optimization of single annual daylighting simulation 
 
The current Radiance dctimestep algorithm calculates the daylighting effects using equations (1) to (3) for one 
time step. Table 1 gives the dimensions of matrices used in the three-phase method. To calculate an element 
vRi,j(t) of VR(t) using equation (1), the number of floating-point operations is 2N3 – 1 with N3 multiplications and 
N3 – 1 additions. Considering 2N3 >> 1, one can approximate that 2N3 – 1 ≈ 2N3. Then the number of floating-
point operations for calculating N2 elements of VR(t) is about 2N2N3 . Similarly, the numbers of floating-point 
operations are about 2N2

2 for computing equation (2) and about 2N1N2 for equation (3) since N2 >> 1. As a 
summation, the number of floating-point operations for computing equations (1) to (3) is about 2N2 (N1 + N2 + 
N3) for a single time step and about 2nN2 (N1 + N2 + N3) for n time steps.  
 
Table 5. Dimensions of matrices and vectors in the Radiance daylighting simulation. 
 

MV MT MD VS(t) 
N1 × N2 N2 × N2 N2 × N3 N3 × 1 

N1 is the number of computed interior illuminances defined by users, N2 = 145, N3 = 146 for Tregenza vector, N3 
= 2306 for Reinhart vector 

 
For a single daylighting simulation, matrices MV, MT and MD are constant during the simulation. As shown in 
Figure 10(a), a better approach is to calculate the product MVMTMD only once at the first time step then reuse it 
for the rest of the simulation:  

 MVTD = MVMTMD,       (5) 

  
 (6) 
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(a) Step 1 

 

 
(b) Step 2 

 
Figure 10. Optimization of the Radiance daylighting simulation algorithm 

 
 
 
 
For n time steps, the number of floating-point operations is about 2N2

2 (N1 + N3) + 2nN1N3 with 2N2
2 (N1 + N3) 

for computing equation (4) and 2nN1N3 for equation (5). The ratio of number of floating-point operations of the 
new method described by equations  and  to that of the current method by equations (1) to (3) is  

 
)(

)(
3212

3131
2
2

NNNnN
NnNNNNRflop ++

++
=

.
 (7) 

 
For an annual daylighting simulation with a time step of one-hour, n is equal to 8760. Using the matrix 
dimensions given in Table 1 and assuming N1 = 64, the value of Rflop is about 0.19 using the Tregenza vector and 
about 0.42 using the Reinhart vector. This indicates that the new method can reduce the number of floating-point 
operations by at least the half. 
   
In addition, the current approach results in redundant data I/O operations when repeatedly calling dctimestep 
during the annual simulation. At each time step, dctimestep reads N1N2 + N2N2 + N2N3 + N3 floating-point data 
for the MV, MT, MD and VS(t). It also writes N1 number of floating-point data for the VI(t). For a simulation with n 
time steps, the total number of I/O operations is n (N1N2 + N2N2 + N2N3 + N1 + N3). As a comparison, the 
number of I/O operations required by the new approach is N1N2 + N2N2 + N2N3 + nN1 + nN3 since it only reads 
MV, MT and MD once. The ratio of number of I/O operations of the new method to that of the current method is 
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 )( 31322221

31322221

NNNNNNNNn
nNnNNNNNNNRIO ++++

++++
=  (8) 

 
Assuming n = 8760 and N1= 64, the value of RIO is about 0.0042 using the Tregenza vector and 0.0065 using the 
Reinhart vector. With less I/O operations, the new method will need less time for the simulation. 
 
Furthermore, the current approach has to invoke dctimestep n times for a simulation with n time steps since it 
only computes the results for a single time step. It takes time to invoke dctimestep by the operating system and to 
initialize the program for parallel computing. Although they are usually small, the accumulated invocation and 
initialization time can be large if the program is invoked for millions of times in the parametric study. To reduce 
the time for program invocations, a better approach is to merge the n sky vectors VS(tk),  into a 
single sky matrix MVS = [VS(t1), ..., VS(tn)] so that the program only needs to be invoked once.  
 
Combining the optimization strategies mentioned above, we proposed an optimized algorithm for the single 
daylighting simulation over n time steps as follows: 

 MVI = MVMTMDMVS ,        (9) 

where MVI = [VI(t1), ..., VI(tn)]. The workflow the optimized algorithm is shown in Figure 10(b). 
 
In addition, the daylighting calculation is not needed when there is no daylighting. Thus, when VS(tk) = 0, a 
filtering-inserting procedure can be used to set the corresponding VI(tk) = 0 without the calculation process. The 
process is shown in Figure 11. First, all zero sky vectors are removed from MVS, which reduces the N3 × n matrix 
MVS to an N3 × n1 matrix MVS1 where n1 is the number of non-zero sky vectors. Then, the equation is computed 
using MVS1 and the result is an N1 × n1 matrix MVI1. Finally, the N1 × n matrix MVI is generated by inserting zero 
vectors at corresponding columns in MVI1. This paper applied the filtering method on all programs for all 
numerical experiments.  
 

 
Figure 11. Process of filtering and inserting zero vectors  
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Appendix 2: Analysis and optimization of multiple annual daylighting simulations 
 
This section discusses how to accelerate a parametric study of multiple annual daylighting simulations. Based on 
equation (8), the multiple annual simulations can be defined as  

 MVI,i,j,k,p = MV,iMT,jMD,kMVS,p,, (10) 

where i = 1, ..., nV, j = 1, …, nT, k = 1,…, nD, and p = 1,…, nS. To perform multiple annual daylighting 
simulations in the parametric study, the current approach is to conduct a single annual daylighting simulation for 
each different combination of the coefficient and sky matrices. If the number of matrices MV, MT, MD and MVS are 
nV, nT, nD, and nS, then the current approach needs nVnDnTnS single annual daylighting simulations.  
 
To reduce the data I/O operations and floating-point operations, we proposed a new algorithm as follows: 
 
Loop p=1 to nS 
   Loop k=1 to nD 
    MDV = MD,kMVS,p  
  Loop j=1 to nT 
   MTDV = MT,jMDV 
   Loop i=1 to nV  
    MVI,i,j,k,p = MV,iMTDV 
   End Loop i 
  End Loop j 
 End Loop k 
End loop p 

 
Figure 12. Pseudo code of the new approach for parametric studies. 

 
When nV = nD = nT = nS = 1, equation  is equivalent to equation. Thus, the above algorithm is also valid for the 
single daylighting simulation. As shown in Table 6, the current approach loads the same matrices for multiple 
times during the parametric study and the new approach only loads the matrices once. The difference in matrices 
loading between the current and the new method increases with the number of cases. The new algorithm can also 
reduce the number of matrix calculations by reusing the calculated results. For instance, the current approach 
calculates the MDV for nVnDnTnS times and the new approach only calculates it for nSnD times.  
 
Table 6. Comparison of numbers of loading operations for matrices in the current and new approaches. 
 

Matrices MV,i MT,j MD,k MVS,p 
Number of matrix loading by current approach nDnTnS nVnDnS nVnTnS nVnDnT 

Number of matrix loading by new approach 1 1 1 1 
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